Problem set for discussions Week 9
 Computing Trig Derivatives

October 20th

Figure 1: Avacado

Group 1

Mundgus Fletcher tries to enter a building by placing a ladder over a 9 - ft -high fence so it rests against the building, which is 2 ft back from the fence (see figure). What is the length of the shortest ladder that can be used?

Group 2

A niffler moves along a straight line. The distance of the niffler from the origin at time t is given by

$$
s(t)=\sin t+2 \cos t
$$

Find the velocity at the following times. $t=0, t=\pi / 4, t=3 \pi / 2$.
Find the acceleratation at the following times: $t=0, t=\pi / 4, t=\pi$

Group 3

Compute:

$$
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}
$$

Group 4

Consider

$$
f(t)=\frac{4 t}{3 t^{2}+27}
$$

on what intervals is f increasing? On what intervals is it decreasing?

Group 5

The number of people $P(t)$ infected by spattergroit after t days is approximated by

$$
P(t)=\frac{10 \log (0.19 t+1)}{0.19 t+1}
$$

When will the number of people infected start to decline?

1 Extra Problems

1. Compute $\frac{d}{d x} \cot (x)$ (hint: use the quotient rule)
2. Compute:

$$
\lim _{x \rightarrow 0} \frac{\log (x+1)}{x}
$$

3. Find the derivative of $y=\frac{\tan x}{x-1}$
